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Abstract

We present a novel framework to deal with static and moving immersed boundaries (IB) based on volume-filtering.
In this strategy, called Volume-Filtering Immersed Boundary (VFIB) method, transport equations are derived by
filtering the Navier-Stokes equations and accounting for stresses at the solid-fluid interface. The result is that boundary
conditions that normally apply on the solid-fluid interface are transformed into bodyforces that apply on the right-hand
side of the filtered transport equations. In this method, the filter width acts as a parameter that controls the level of
resolution. The IB is considered well-resolved if the filter width is much smaller than the characteristic corrugation
scale of the interface. There are several innovations in this IB method. First, it sheds light on the role of the internal
flow which arises when the transport equations are solved inside the IB. We show that, it is essential to separate
stresses due to the external and internal fluids in order to get accurate forces, and provide a method to do so. Second,
we show that the volumes associated with Lagrangian forcing points on the boundary depend on the local topology of
the surface. We provide a straightforward way to compute these volumes using a triangle tessellation of the interface
and the surface density function. Third, we provide an efficient procedure to compute the solid volume fraction, thus,
enabling tagging interior/exterior cells. This volume fraction is also involved in the procedure to separate stresses due
to the external fluid from the total stresses. Fourth, we show a path forward to extend the VFIB method to Large Eddy
Simulations involving IBs. Lastly, we apply the VFIB in several numerical tests involving two- and three- dimensional
static and moving IBs. We show greatly improved results compared to prior IB methods. Further, we test several filter
kernels and show that, for well-resolved IBs, the choice of the kernel plays little role.
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1. Introduction

Besides few canonical flows, most fluid dynamic applications involve bounding surfaces with complex topology.
These surfaces may be fixed, as in the case of airfoils and ship hulls, or moving, as in the case of stirred-tank reactors,
flapping wings, and turbines. Despite increasing computing power, numerical simulations of such flows hinge on
the availability of methods capable of capturing flow-surface interactions with accuracy while also meeting practical
computational considerations such as robustness, ease of implementation, and scalability. The seminal work of Peskin
[28, 27, 18, 29], and later extended by several investigators, shows that it is possible to impose boundary conditions
on topologically complex bounding surfaces without resorting to body-fitted meshes. This approach enables the use
of fast and scalable Cartesian grid solvers. Boundary conditions are imposed using ad-hoc forcing terms added to the
right-hand side of the governing equations. Conceptually, the equations to be solved for an incompressible flow are

∇ · u = 0 (1)
∂u
∂t

+ u · ∇u = −
1
ρ
∇p + ν∇2u + FIB (2)

where ρ and ν are the fluid’s constant density and kinematic viscosity, respectively. The ad-hoc numerical term
FIB represents the immersed boundary (IB) forcing and is crafted to impose no-slip boundary conditions. Despite
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the popularity of IB methods, the ad-hocness of these methods remains a problem: the forcing term FIB does not
correspond to any physical term in the original Navier-Stokes equations. This makes it difficult to confidently answer
long-standing questions such as (i) should the forcing be applied to the entire volumetric region occupied by the
immersed object or be limited to the solid-fluid boundary? (ii) how is the solution affected by the sharpness of the
immersed boundary representation?, and (iii) how to properly compute the hydrodynamic force on the solid when the
immersed boundary is diffuse? Further, the fact that the IB forcing does not derive from analytical expressions makes
it difficult to identify changes that would materially improve solution quality, extend the approach to Large-Eddy
Simulations, or connect with established multiphase flow models in flows laden with a multitude of small immersed
solids. In this manuscript, we remove the ad-hocness by deriving a new framework for immersed boundary methods
that has sound theoretical footing. We show that the immersed boundary forcing can be derived rigorously by filtering
the Navier-Stokes equations, discuss its discretization, and show that several other terms may be missing in previously
proposed immersed boundary methods.

The work of Uhlmann [44] represents a notable improvement over Peskin’s original method. Uhlmann [44] builds
the immersed boundary forcing on a cloud of Lagrangian markers placed on the surface of the solid. Then, using
convolutions with regularized Dirac delta [32], the Lagrangian forcing is transformed into the Eulerian forcing field
FIB. The Lagrangian forcing is built such that, in principle, the interpolated fluid velocities at the Lagrangian markers
match the solid’s velocity at these locations. Uhlmann [44] shows that the method performs well in several bench-
mark tests with static and moving boundaries. Spurious oscillations of the hydrodynamic force observed with other
immersed boundary methods [43, 19, 38, 36] are significantly reduced. This makes Uhlmann’s method remarkably
stable even with thousands of fully resolved moving spheres. Since then, several improvements have been proposed.
Yang et al. [47] introduced a smoothing technique for the discrete Dirac delta that further reduces spurious oscilla-
tions observed with moving immersed boundaries. Recognizing that the diffuse nature of the IB forcing causes the
IB forcing from one Lagrangian marker to affect the calculation of IB forcing on neighboring markers, Luo et al. [23]
proposed a variant, called multidirect forcing, where the IB forcing is imposed iteratively to improve the convergence
of the Lagrangian marker velocity towards the desired no-slip velocity. Breugem [7] used this method in simulations
with resolved spheres, and noticed that the Lagrangian markers must be retracted inwards to get correct hydrodynamic
forces on the immersed spheres. Kempe and Fröhlich [17] proposed a variant similar to the multidirect forcing of Luo
et al. [23] where the IB forcing is applied iteratively, and introduced a different approach for computing hydrodynamic
forces on immersed solids based on level-set functions. Kasbaoui et al. [16] proposed a semi-implicit time integra-
tion scheme for the calculation of the IB forcing term based on an iterative Crank-Nicolson scheme. This approach
improves the convergence of the Lagrangian marker velocity and was shown to compare well with experimental data
even for inertially stirred turbulent flows in closed vessels.

Despite the success of the aforementioned methods, there are still open questions stemming from the ad-hocness
of these methods. First, the role of the internal flow inside the immersed solid is not yet fully understood. This
flow may develop when the IB forcing is applied only on the surface of the immersed solid, leaving internal cells
unforced. With the so-called fictitious domain IB methods, a rigidity constraint is applied to enforce rigid body
motion within the solid [12, 39]. However, Uhlmann [44] reports that applying the forcing throughout the volumetric
region does not change his results significantly compared to when the forcing is applied on the boundary only. Thus,
the latter option is preferred due to its lower computational cost. Despite being considered an artificial byproduct of
the forcing technique [13, 44, 17], the internal flow is used to compute hydrodynamic forces on moving spherical
particles [44, 17, 42]. Uhlmann [44] assimilates the flow inside the sphere to rigid body motion despite it not being
the case. Kempe and Fröhlich [17] show that it is necessary to embrace the non-rigid motion inside the sphere in order
to compute the hydrodynamic force accurately. If the internal flow was to be neglected or zeroed out on the basis that
it is artificial, then the hydrodynamic force computed by Kempe and Fröhlich [17] and Uhlmann [44] would vanish.

Another ambiguous point in this class of IB methods concerns the determination of Lagrangian marker volumes
which arise in the computation of the Lagrangian immersed boundary forcing. Uhlmann [44] and several others (e.g.
[17, 42]) relate the marker volume ∆Vm to the grid spacing ∆x following ∆Vm ∼ ∆x3, and uses enough markers to
form a thin shell around the immersed boundary. However, Zhou and Balachandar [49] argue that it is a misconception
to pin ∆Vm to ∆x3 and suggest that it should be considered as a relaxation factor that controls how fast errors in the
no-slip boundary conditions decay. They provide an expression to compute ∆Vm based on stability analysis, but, the
calculation is cumbersome and only applicable to spherical immersed boundaries. In both [44] and [49], geometric
information about the immersed boundary such as surface area and curvature are not taken into consideration. How-
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ever, the fact that Zhou and Balachandar [49] find that ∆Vm must decrease with decreasing marker spacing suggests
that the marker volume depends, at least in part, on the portion of the IB surface area around the marker.

To overcome the issues raised above, we derive a new framework for immersed boundary methods that does not
rely on any ad-hoc elements. The method we present, called Volume-filtering Immersed Boundary (VFIB) method,
relies on the volume-filtering technique introduced by Anderson and Jackson [2]. The method is similar in spirit to
Large Eddy Simulations, where the Navier-Stokes equations are filtered with a filter kernel having width δ f . This pro-
cedure yields filtered governing equations where the effects of boundary conditions appear as right-hand side terms
involving surface integrals on the immersed boundary. The derivation of these equations is physically and mathemati-
cally rigorous, and does not depend on any numerical considerations. Traditionally, volume-filtering has been applied
to derive continuum equations for multiphase flows [2, 3, 14] and porous media [46]. In these applications, the width
of the filter kernel, δ f , is chosen much larger than the characteristic interface corrugation scale δc, such as particle
radius or pore size. In this way, Eulerian quantities representing solid volume fractions, mass, and momentum can be
extracted from large ensembles of discrete solids. For the purpose of deriving an immersed boundary method, we take
the opposite limit: the filter width is much smaller than the characteristic interface corrugation scales. In this limit
(δ f � δc), the immersed boundary as well as all flow scales larger than δ f are fully resolved. The resulting equa-
tions form the basis of the VFIB method. As we show in this manuscript, the VFIB method generalizes Uhlmann’s
immersed boundary method and sheds much needed clarification on the role of the internal flow, Lagrangian marker
volume, and a more accurate way to compute hydrodynamic forces.

The objectives of the present manuscript are two-fold. The first goal is to present the theory underpinning the
Volume-filtering Immersed Boundary method. This is done in section 2, where we present the derivation of the
governing equations that are solved in the VFIB method. The emphasis here is on the mathematical and physical
framework which does not depend on the choice of numerical parameters. With the theory clearly established, the
second goal of this manuscript is to provide an implementation of the VFIB method, discuss practical considerations
(such as the choice of filter kernel, relative size of filter kernel and mesh spacing, calculation of volume fraction, and
forces on the IB), and demonstrate the approach in canonical test cases. We address the discretization and numerical
implementation of these equations in section 3. In section 4, we discusses the characteristics of different filter kernels
tested in the present study. We illustrate the approach using numerical examples with static, forcibly, and freely
moving immersed boundaries in section 5. Finally, we give concluding remarks in section 6.

2. The Volume-Filtering Immersed Boundary Method

In this section, we apply the volume-filtering method of Anderson and Jackson [2] to the problem of a fluid with
an immersed solid. We consider two formulations and discuss the merits of both. In the two-phase formulation, we
describe the dynamics of the flow outside the immersed boundary separately from the dynamics inside the solid. In
the one-phase formulation, we consider that the immersed object is hollow and filled with the same fluid as outside of
it. By describing the total mass and momentum conservation, we arrive at governing equations that can be discretized
efficiently and where the Immersed Boundary forcing is given explicitly.

2.1. Two-phase formulation

Consider two-phases separated by an interface S I as shown in the schematic in figure 1. Phase “ f ” corresponds
to the fluid phase, while phase “s” corresponds to the immersed solid. Where the fluid exists, mass and momentum
conservation are given by the incompressible Navier-Stokes equations

∇ · u f = 0 (3)

ρ f

(
∂u f

∂t
+ ∇ · (u f u f )

)
= ∇ · τ f (4)

where u f , p, and τ f = −pI+µ f (∇u f +∇uT
f ) are the fluid velocity, pressure, and stress tensor, respectively. Throughout,

the manuscript we assume that the fluid density ρ f and viscosity µ f are constant. Borrowing the terminology from
Jackson [14] equations (3) and (4) are called the point-wise conservation equations.
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Figure 1: Illustration of the volume-filtering approach. Filtering the point-wise fields allows the extraction of average fluid and solid volume
fractions (α f and αs), mass (α f ρ f and αsρs) and momentum (α f ρ f u f and αsρsus) within a region of size δ f . The immersed boundary is well
resolved when the characteristic corrugation scale δc of the interface is much larger than the filter width δ f .

For the familiar Navier-Stokes equations (3) and (4), the boundary conditions are imposed through additional
constraints that apply on the fluid-solid interface S I and outside boundaries. Considering an impermeable interface,
no slip-boundary conditions apply, i.e.,

u f (x) = uI(x) for x ∈ S I (5)

where uI(x) is the velocity of a point x located on the interface.
To illustrate how volume-filtering works, consider a point x near the immersed boundary as schematized in figure

1. By filtering the point-wise quantities, we can extract the fluid volume fraction α f , average fluid mass α fρ f , and
fluid momentum α fρ f u f in a region of size δ f around the point x. In this way, we can define the filtered fluid velocity
u f at location x corresponding to the average fluid velocity under the filter kernel. As shown in figure 1, it is only the
volumetric region occupied by the fluid that counts towards the extracted fluid quantities. Likewise, we can extract
the solid volume fraction αs, average solid mass αsρs, and solid momentum αsρsus around the point x by considering
only the region occupied by the solid that falls under the filter kernel. However, because we do not seek to model the
internal solid dynamics, we will focus on the fluid phase only. Contrary to the point-wise velocity u f , which exists
only in the fluid region, the filtered fluid velocity u f can be defined for any arbitrary point in space. Moving the
probing point x towards the solid causes the filtered fluid velocity u f to decay smoothly to zero as the fluid region
under the filter kernel shrinks. Note that the filtered fluid velocity at points x inside the solid, but less than δ f /2 away
from S I , may not be zero as there is still a fluid region under the filter kernel. Thus, volume-filtering smears the effect
of the interface over a region of size δ f . The immersed boundary is well resolved when the filter width δ f is much
smaller than the characteristic corrugation scale δc of the immersed boundary. For example, if the immersed solid is a
sphere of diameter D, we would require that δ f � δc = D to retain good resolution of the immersed boundary. Length
scales below δ f are unresolved and must be modeled. In the limit where δ f is vanishingly small, the filtered velocity
becomes a discontinuous field equal to the point-wise velocity inside the fluid and zero inside the solid.

To formalize this idea, we consider a symmetric filter kernel g that integrates to unity and has compact support of
width δ f . Mathematically, these properties read,∫∫∫

y∈R3
g(y)dV = 1, (unitary) (6)

g(−y) = g(y), (symmetric) (7)
g(y) = 0 if ||y|| ≥ δ f /2. (compact) (8)

Notice that the integration is considered over the entire space which includes regions occupied by both fluid and solid
phases. Symmetry of the kernel is required to avoid artificial anisotropy and plays an important role in the derivation
of the filtered conservation equations. Compactness of the filter kernel serves primarily a computational purpose as it
allows fast numerical integration of g on surfaces, but is otherwise not required for the purpose of the derivation.
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The fluid volume fraction at any arbitrary location x is given by

α f (x, t) =

∫∫∫
y∈R3

1 f (y, t)g(x − y)dV, (9)

where 1 f (y, t) is an indicator function equal to 1 if y is in the fluid and 0 otherwise. Similarly, the solid volume fraction
αs is defined by replacing the fluid indicator function in equation (9), with that of the solid, i.e., 1s = 1 − 1 f . The
volume fraction α f (x) represents the ratio of the volume occupied by the fluid to the total volume under the support
of the filter kernel centered at a location x. Regions of space occupied exclusively by the fluid have a fluid volume
fraction α f = 1. Conversely, regions where only the solid phase can be found within the support of the filter kernel
have a fluid volume fraction α f = 0. Locations where 0 < α f (x) < 1 correspond to those where both phases are
within reach of the filter kernel, as in the schematic in figure 1. This corresponds to a narrow band of width δ f around
the interface. Isocontours α f = αs = 0.5 give the location of the interface, if the latter can be considered locally
planar. In this formulation, discontinuous effects across the interface are smoothed over a distance δ f . The interface
representation can be made sharper by reducing the size of δ f . Equation (6) guarantees that the solid and fluid volume
fractions add up to unity at any given location, i.e., α f (x) + αs(x) = 1 for any x ∈ R3. At this point, we emphasize
that the volume fraction in equation (9), filtered velocities, and filtered governing equations to follow are not tied to
any specific discretization or mesh.

For an arbitrary point x in space, the volume-filtered fluid velocity u f is defined as following,

α f (x, t)u f (x, t) =

∫∫∫
y∈R3

1 f (y, t)u f (y, t)g(x − y)dV . (10)

The volume-filtered velocity is continuous and exists everywhere. It tends smoothly to 0 a distance δ f /2 away within
the solid.

The volume-filtered governing equations are derived by application of the filter to the point-wise equations (3) and
(4). Using the divergence theorem and symmetry of the filter kernel (∂g(x − y)/∂xi = −∂g(x − y)/∂yi), one can show
that filtering the gradient, divergence and time derivative operators yields,

α f (x)∇Λ(x) = ∇(α fΛ) −
∫∫

y∈S I

nΛ(y, t)g(x − y)dS , (11)

α f (x)∇ · Λ(x) = ∇ · (α fΛ) −
∫∫

y∈S I

n · Λ(y, t)g(x − y)dS , (12)

α f (x)
∂Λ

∂t
(x) =

∂(α fΛ)
∂t

+

∫∫
y∈S I

(n · u)Λ(y, t)g(x − y)dS , (13)

where Λ is an arbitrary vector or tensor property of the fluid. Here, n represents the normal vector at the interface
pointing from the solid to the fluid phase. A full derivation of these identities can be found in the original work of
Anderson and Jackson [2]. Because the application of the filter removes the notion of a boundary (x can be anywhere
inR3), information from the boundary conditions emerges in identities (11), (12), and (13) as surface integrals on the
interface separating the solid and fluid phases.

Applying the filtering procedure to the mass and momentum equations (3) and (4) leads to

∂α f

∂t
+ ∇ · (α f u f ) = 0, (14)

ρ f

(
∂

∂t
(α f u f ) + ∇ · (α f u f u f )

)
= ∇ · (α fτ f ) −

∫∫
y∈S I

n · τ f (y, t)g(x − y)dS . (15)

In the filtered momentum equation (15), the term

FI, f (x, t) =

∫∫
y∈S I

n · τ f (y, t)g(x − y)dS (16)
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represents a force density exerted by the immersed solid on the fluid. Note that this term includes a surface integral on
the immersed boundary, meaning that the forcing is limited to a thin region of width δ f around the immersed boundary
rather than the entire volumetric region. The force exerted by the fluid on the solid can be obtained by integrating the
immersed boundary force density over the entire domain (fluid and solid regions):∫∫

y∈S I

n · τ f (y, t)dS =

∫∫∫
x∈R3

FI, f (x, t)dV. (17)

The relationship above does not require δ f = 0, and holds true for arbitrary filter widths and surface curvatures. The
filtered stress tensor α fτ f = α f [−pI + µ f (∇u f + ∇uT

f )] requires detailed examination. Whereas filtering the pressure

part is straightforward (−α f pI = −α f pI), filtering the viscous part leads to

µ fα f

(
∇u f + ∇u f

T
)

= µ fα f

(
∇u f + ∇uT

f −
2
3

(∇ · u f )I
)

+ α f Rµ, f (18)

where Rµ, f represents the residual viscous stress tensor. Equation (18) is derived by application of the identity (11).
The residual viscous stress tensor Rµ, f is zero away from the immersed boundary. Near the IB, the effects of Rµ, f may
be significant if the IB is poorly resolved. In the limit where δ f → 0, the residual viscous stresses vanish.

Application of the filter leads to the emergence of unclosed convective terms α f u f u f in equation (15). To deal
with these terms, we introduce the subfilter-scale stress tensor,

τsfs, f = u f u f − u f u f . (19)

To summarize, the set of equations obtained by volume-filtering equations (3) and (4) are:

∂α f

∂t
+ ∇ · (α f u f ) = 0, (20)

ρ f

(
∂

∂t
(α f u f ) + ∇ · (α f u f u f )

)
= ∇ ·

(
−α f pI + α fµ f

(
∇u f + ∇uT

f −
2
3

(∇ · u f )I
)

+ α f Rµ, f

)
− FI, f − ∇ · (α fτsfs,f). (21)

While the derivation of equations (20) and (21) is mathematically rigorous, discretizing and solving these equations
in their present form is challenging. The main complication is due to the fluid volume fraction that vanishes inside the
solid. Because of this, the filtered fluid velocity u f cannot be computed from the transported quantity (α f u f ) without
leading to large errors and computational instabilities.

Lastly, as we discuss in Appendix A, equations (20) and (21) can be further transformed to arrive at a form that
is frequently used in multiphase flows, see equation (A.5). However, such procedure is not needed for the present
purpose.

2.2. One-phase formulation

We now present an alternative formulation that overcomes the numerical stability issues encountered with the
two-phase formulation. In the one-phase formulation, we assume that the immersed solid is hollow and filled with
fluid having identical density and viscosity as the fluid outside. In this view, the immersed boundary represents
an infinitely thin interface that separates two fluids. We denote α1 and α2 the volume fractions occupied by the
exterior and interior fluids, respectively. Applying volume-filtering to both fluids, we obtain the following mass and
momentum conservation equations,

∂αi

∂t
+ ∇ · (αiui) = 0, (22)

ρ f

(
∂(αiui)
∂t

+ ∇ · (αiui ui)
)

= ∇ ·

(
−αi piI + αiµ f

(
∇ui + ∇uT

i −
2
3

(∇ · ui)I
)

+ αiRµ,i

)
− FI,i − ∇ · (αiτsfs,i). (23)

where i = 1 or 2 depending on which fluid is considered. In addition to the above equations, the volume fractions are
constrained by the condition α1 + α2 = 1.
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To obtain single-field equations, we sum over the two fluids in equations (22) and (23):

∇ · um = 0, (24)

ρ f

(
∂um

∂t
+ ∇ · (um um)

)
= −∇pm + µ f∇

2um − FI,m + ∇ · (τr − τsfs,m). (25)

These equations describe the transport of the total mass and momentum of both fluids. Here, um = α1u1 + α2u2 is the
mixture velocity, pm = α1 p1 + α2 p2 is the mixture pressure, FI,m = FI,1 + FI,2, and τsfs,m = τsfs,1 + τsfs,2. The viscous
stress tensors and residual stress tenors Rµ,i combine to give the term µ f∇

2um in equation (25). For ease of notation,
we drop the subscript m in the rest of the manuscript.

In this one-phase formulation, we see the emergence of a new tensor,

τr = uu −
∑

i

αiuiui = α1α2(u1 − u2)(u2 − u1). (26)

The tensor τr represents the momentum drift across the interface. This tensor can be neglected for sufficiently well
resolved immersed boundaries, i.e., δ f /δc � 1. Away from the interface, τr = 0 since α1 = 0 or α2 = 0. Near the
interface, no-slip boundary conditions lead to u1 ' u2 ' uI , where uI is the interface velocity, hence, τr ' 0. In the
rest of the paper, we will assume that the immersed boundary representation is sufficiently sharp such that τr can be
considered identically zero everywhere. This assumption is equivalent to stating α1α2(u1 − u2) = 0, and allows us to
extract the internal and external fluid velocities using:

α1u1 = α1u + α1α2(u1 − u2) ' α1u (27)
α2u2 = α2u + α1α2(u2 − u1) ' α2u (28)

In the one-phase formulation, the subfilter scale term is

τsfs =
∑

i

αiτsfs,i = α1(u1u1 − u1u1) + α2(u2u2 − u2u2) (29)

In general, the subfilter-scale tensor must be closed if the immersed boundary is poorly resolved (δ f /δc = O(1) or
δ f /δc � 1). In particle-laden flows, where similar volume-filtering is carried out using filter kernels typically much
larger than the particle diameters, the subfilter scale stresses are known as pseudo-turbulent stresses and are subject
of active research and modeling [37, 25]. Closures may also be required if the flow scales δu are not well-resolved
(δ f /δu & 1), even if the immersed boundary is well-resolved δ f /δc � 1. For example, if two well-resolved immersed
boundaries approach one another, but the gap between the two solids becomes smaller than the filter width δ f , τsfs
should be augmented with a lubrication model [9] to represent the effect of the subfilter fluid in the gap between the
two objects. In the case where the flow is turbulent and the filter width is larger than the turbulence scales, closure
of τsfs, away from the immersed boundary, may be carried out by any of the well-established LES models such
as turbulent eddy viscosity model of Boussinesq [6], the dynamic Smagorinsky model [11, 20], or scale-similarity
models [5]. While there is an array of closure models available to model τsfs, this paper focuses on the validation of
the VFIB method in the limit of well resolved immersed boundaries (δ f /δc � 1) and flow scales (δ f /δu � 1) , and
therefore the subfilter-scale terms will be neglected.

The total immersed boundary force density can be written as

FI = FI,1 + FI,2 =

∫∫
S I

(n · [τ1 − τ2]) (y)g(x − y)dS (30)

where n is the normal pointing from the internal fluid (i = 2) to the external fluid (i = 1). It is important to acknowledge
that this term accounts for forces exerted on the immersed boundary by both fluids inside and outside. Computing the
hydrodynamic force on an immersed object requires extracting the contribution of the external fluid, FI,1, from the
total immersed boundary force density FI . This aspect is addressed in §2.4.

The force density FI can be expressed explicitly using mixture quantities. To do so, consider the Taylor series of
the total surface stresses in the vicinity of a point yI located at the interface

(n · [τ1 − τ2]) (y) = (n · [τ1 − τ2]) (yI) + (y − yI) · ∇ (n · [τ1 − τ2]) (yI) + O(δ2
f ) (31)
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Introducing equation (31) in equation (25) and rearranging the terms leads to

(n · [τ1 − τ2]) (yI) = −`(yI)
(
ρ f

Du
Dt
− ∇ ·

(
−pI + µ f (∇u + ∇uT ) + τr − τsfs

))∣∣∣∣∣
y=yI

+ O(δ2
f ) (32)

where D/Dt is the substantial derivative. Thanks to the symmetry of the filter kernel g, the first order term from the
Taylor series cancels out leadings to a second order approximation in δ f of the immersed boundary stresses.

In equation (32), the length

`(yI) =

(∫∫
S I

g(yI − y)dS
)−1

(33)

represents the interface smearing length at a location yI on the immersed boundary. The smearing length is on the
same order as the filter kernel width δ f , however, the exact value depends on both interface curvature and filter kernel
g. If the interface around point y can be considered flat, then `(y) = g(0)−1/3. For the triangle and cosine filter kernels
described in §4, the smearing length for a flat interface is `(y) = 2/δ f and π/(2δ f ), respectively.

The smearing length is closely connected to the interface surface density. For a point y on the interface, equation
(33) shows that `(y) is the inverse of the surface density Σ at that location, where

Σ(x) =

∫∫
S I

g(x − y)dS . (34)

The surface density Σ represents how much surface area of the immersed boundary is under the filter kernel. Away
from the interface, Σ = 0. Near the interface, the value of Σ depends on the choice of filter kernel, width δ f , and local
curvature. Integrating Σ over the entire domain gives the total surface area of the immersed boundary AI:∫∫∫

x∈R3
Σ(x)dV = AI. (35)

Note that reducing δ f increases Σ and, consequently, reduces the smearing length ` computed at a point on the
interface.

At this point, the no-slip boundary condition can be introduced in equation (32). To do so, notice that a fluid
particle located on the interface has an acceleration that matches the acceleration of the IB,

D
Dt

u(y) =
d
dt

uI(y) y ∈ S I . (36)

Once expressions (32) and (36) are introduced in (30), we see that the interface stress is given by:

FI(x) = −

∫∫
S I

`(y)
(
ρ f

duI

dt
+ ∇p − µ f∇

2u − ∇ · (τr − τsfs)
)∣∣∣∣∣∣

y
g(x − y)dS + O(δ2

f ) (37)

Thus, the complete equations that must be solved in the one-phase VFIB method are

∇ · u = 0, (38)

ρ f

(
∂u
∂t

+ ∇ · (u u)
)

= −∇p + µ f∇
2u + ∇ · (τr − τsfs) +

∫∫
S I

`

(
ρ f

duI

dt
+ ∇p − µ f∇

2u − ∇ · (τr − τsfs)
)

gdS .

(39)

The most significant difference between the one-phase VFIB method and the IB method introduced by Peskin,
is that the present method intentionally accounts for the effect of smearing the IB. The thickness of the smearing is
controlled using the filter thickness δ f . Notice that, in the limit of vanishing filter thickness (δ f → 0), we recover
Peskin’s equations as the unclosed terms in equation (39) vanish and the filter kernel g becomes a Dirac delta (g→ δ).
However, there are many advantages to choosing non-zero filter thickness. From a modeling perspective, this enables
us to account for the effect of under-resolved flow motion in the vicinity of the IB using sub-filter scale terms τr and
τsfs, if models can be supplied. This also allows us to purposely coarsen the resolution in applications such as LES,
by taking δ f larger than some cut-off length scale of the flow. From a computational perspective, the choice of δ f , 0
removes the need to discretize and regularize a Dirac delta distribution. This also has the advantage of decoupling
the choice of filter width δ f from the choice of grid spacing ∆x, or any other discretization parameter. It also offers
several advantages in the calculation of stresses on the IB and volume fraction field as we shall see in section 3.
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2.3. Volume fraction computation

Although the volume fractions α1 and α2 do not appear explicitly in the one-phase formulation (equations (22)
and (23)), the computation of the volume fraction serves three goals: (i) distinguish between interior and exterior
points, (ii) compute the total volume occupied by the immersed solid, and most importantly (iii) extract the respective
contributions due to external and internal fluids FI,1 and FI,2 from the total immersed boundary force density FI (see
§2.4).

Rather than using the formal definition equation (9) which requires computationally expensive procedures to build
an indicator function [4, 17], we compute the external fluid volume fraction α1 by solving a Poisson equation. To
derive this equation, first, replace Λ with the identity tensor I in equation (12) to obtain the gradient of the external
fluid volume fraction,

∇α1(x, t) =

∫∫
y∈S I

ng(x − y)dS . (40)

The Poisson equation for the volume fraction is obtained by taking the divergence of the equation above:

∇2α1(x, t) = ∇ ·

∫∫
y∈S I

ng(x − y)dS . (41)

The above Poisson equation derived by volume-filtering is similar to the Poisson equation used to build phase-indicator
functions in simulations of bubbly flows with the front-tracking method of Unverdi and Tryggvason [45]. Equation
(41) can be parallelized and solved efficiently using elliptic solvers, including in simulations where immersed bound-
aries move and require frequent updates of α1. In the examples provided in section 5, we use an algebraic multigrid
method to solve equation (41) with Dirichlet boundary conditions on the domain boundaries. For simplicity, we solve
for the volume fraction throughout the entire domain, although it would suffice to solve (41) in a narrow band of
thickness δ f around the solid-fluid interface similar to the approach of Unverdi and Tryggvason [45]. Note that in the
case of static immersed boundaries, equation (41) needs to be solved only once. For forcibly moved IBs, the solver
(equations (38) and (39)) does not require the volume fraction, and as such, the computation of the volume-fraction
is carried out as part of the post-processing workflow. For cases of Fluid-Structure Interaction, such as freely-moving
particles, the volume fraction is needed at each step in order to compute the force on the immersed solids and update
their dynamics (see example in §5.5). The volume fraction of the internal region is found using α2 = 1 − α1.

2.4. Computing the force due to the external fluid

As discussed in the introduction, the role of the internal flow must be clarified. In the one-phase formulation, the
internal flow is not an artificial byproduct of the forcing technique, but instead has physical meaning. In the present
approach, we explicitly consider hollow solids filled with the same fluid as the one they have been immersed into. As
a result, if the solid moves, the internal fluid develops a non-zero velocity, causing additional stresses on the interface.
Even if the solid is static, the average nature of the formulation makes it that solving the mixture equations (24) and
(25) may lead to non-zero mixture velocities inside the hollow solid, especially if the interface is very diffuse (i.e.,
δ f /δc is not � 1). Thus, it is essential to be able to isolate the hydrodynamic stresses due to the external fluid from
the total hydrodynamic stresses due to both internal and external fluids.

If stresses due to the internal flow can be neglected, the force on the immersed solid would be∫∫
S I

n · τ1dS =

∫∫∫
R3

FI,1dV (42)

'

∫∫∫
R3

FIdV = −

∫∫
y∈S I

`(y)
(
ρ f

D
Dt

u + ∇p − µ f∇
2u − ∇ · (τr − τsfs)

)∣∣∣∣∣
y

dS (43)

This approximation may be acceptable for flows with static boundaries and high momentum, since the internal flow
is generally comparatively very small.

A more accurate estimation of the external forces on the immersed solid can be obtained by isolating and calcu-
lating the stresses due to the external fluid directly. Starting from the momentum conservation equations (23) for the
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nm

xm

Sm

Figure 2: Example of a mesh of a spherical immersed boundary. The “m”-th mesh triangle, S m, has surface area Am, centroid xm, and outward
pointing normal nm.

external flow (i = 1) and following the same approach as in section 2.2, we obtain the force due to the external flow,∫∫
S I

n · τ1dS = −

∫∫
y∈S I

`(y)
(
ρ fα1

D
Dt

u1 − ∇ ·

(
−α1 p1I + µ fα1

(
∇u1 + ∇uT

1−
2
3

(∇ · u1)I
)

+ α1Rµ,1 − α1τsfs,1

) )∣∣∣∣∣∣
y

dS (44)

This expression can be rearranged in the following way∫∫
S I

n · τ1dS =

∫∫
y∈S I

n · (τ1 − τsfs,1)dS −
∫∫

y∈S I

α1(y)`(y)
(
ρ f

D
Dt

u1 − ∇ ·
(
τ1 − τsfs,1

))∣∣∣∣∣
y

dS (45)

where τ1 = −p1I + µ f (∇u1 + ∇uT
1 − 2/3∇ · u1) + Rµ,1 is the filtered stress tensor.

Since we solve for the mixture quantities (u and p), it is more advantageous to express (45) in terms of these
quantities. This can be done when the immersed boundary is well-resolved. Under such condition, we may neglect
the tensors τsfs and Rµ, and make the approximations u1(y) ' u(y) and p1(y) ' p(y) for points y on the interface S I .
Thus, equation (45) becomes∫∫

S I

n · τ1dS '

∫∫
S I

(
−pI + µ f (∇u + ∇uT )

)
· ndS −

∫∫
y∈S I

α1(y)`(y)
(
ρ f

d
dt

uI + ∇p − µ f∇
2u

)∣∣∣∣∣∣
y

dS , (46)

where we have also used the no-slip boundary condition in the form Du/Dt = duI/dt.
Equation (46) shows that, to get the force exerted on the immersed boundary, it is not enough to integrate the

(resolved) stresses on the immersed boundary, i.e, computing the first term on the right-hand side of (46) only. Doing
so would lead to significant under-estimation of the force due to the external fluid. This is, perhaps, the reason
why prior investigators sought alternative ways to compute the stresses on the immersed boundary, for example, by
converting

∫∫
S I

n·τ1dS into a volumetric integral and involving the internal flow. Such methods are not needed if both
terms in (46) are computed. This is the method that we use in the rest of the manuscript to calculate hydrodynamic
forces on immersed boundaries.

3. Numerical implementation

The VFIB method is implemented in a library called LEAP and interfaced with the flow solver NGA. Below, we
describe only elements pertaining to the implementation of the VFIB method. Details about other aspects of the flow
solver NGA can be found in [10].

3.1. Spatial discretization of the interface
We now focus on the discretization of the forcing term in equation (37). Suppose that the immersed interface has

been meshed, such that S I = ∪N
m=1S m, where S m are the elements of the mesh. Figure 2 shows an example of a mesh
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for a spherical immersed boundary. The IB forcing can be written as the sum of discrete contributions from each mesh
element

FI(x) = −

N∑
m=1

∫∫
y∈S m

`(y)
(
ρ f

d
dt

uI + ∇p − µ f∇
2u − ∇ · (τr − τsfs)

)∣∣∣∣∣∣
y

g(x − y)dS + O(δ2
f ). (47)

Assuming that the typical mesh width is O(∆x) and using the mid-point rule leads to

FI(x) = −

N∑
m=1

`(xm)
(
ρ f

d
dt

uI + ∇p − µ f∇
2u − ∇ · (τr − τsfs)

)∣∣∣∣∣∣
xm

g(x − xm)Am


+O(∆x2, δ2

f ). (48)

where xm is the location of the centroid of the mesh element S m and Am its surface area.
Expression (48) suggests a possible interpretation where the triangle centroids are viewed as Lagrangian forcing

points, similar to the view adopted by Uhlmann [44]. With this interpretation, each Lagrangian forcing point in (48)
can be associated with a volume ∆Vm = `(xm)Am. Thus, in the VFIB method, the Lagrangian point volume depends
on the local curvature of the immersed boundary, choice of filter kernel g, and centroid spacing through the smearing
length ` and the triangle surface area Am. This is in contrast with the method of Uhlmann [44] where Lagrangian
points are assigned a fixed volume ∆Vm = ∆x3, regardless of the local topology of the immersed boundary. Further,
the volume ∆Vm = `(xm)Am can be computed directly from the surface density (Σ = `−1) and the triangle surface area
Am without resorting to any optimization method as done by Zhou and Balachandar [49].

3.2. Temporal discretization
The time integration scheme is based on a semi-implicit iterative Crank-Nicolson scheme originally developed by

Akselvoll and Moin [1] and Pierce and Moin [30] and recently adapted by Kasbaoui et al. [16] for simulations with
immersed boundaries. The steps below describe the update from time tn to tn+1.

Step 1a: The first step consists in updating the immersed boundary to the n + 1 time step. This is performed by
updating the locations and velocities of the Lagrangian centroids to the new time step.

xn
m → xn+1

m ; un
I,m → un+1

I,m (49)

In cases where the motion of the boundary is predetermined, the positions and velocities can be updated according to
the laws of rigid body motion. A more general scheme can be used for applications in fluid-structure interaction.

Step 1b: Once the new location of the centroids is found, we compute the surface density Σ using:

Σn+1(x) =

N∑
m

g(x − xn+1
m )Am (50)

which represents equation (34) discretized with the mid-point rule. Section 3.3 provides details on the extrapolation
procedure used to build the fields g(x − xm) in our Finite Volume solver.

Step 1c: Next, the smearing length at the centroids is obtained by taking the inverse of the surface density inter-
polated at the centroids,

`(xn+1
m ) =

(
Σn+1(xn+1

m )
)−1

.

Interpolations are performed by taking convolutions with the filter kernel g. Details are provided in §3.3.
Step 1d: If desired, the new fluid volume fraction field αn+1

1 is computed by solving the discretized Poisson
equation (41),

∇2αn+1
1 = ∇ ·

 N∑
m

nmg(x − xm)Am

 . (51)

Note that if the immersed boundary is static, steps 1a-d need only be performed at the simulation start.
Step 2: At this step the iterative loop is initiated. We assume that k sub-iterations have been performed and

show the calculations for (k + 1)th sub-iteration. As in [16], operator splitting is used to decouple momentum update,
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xp

Figure 3: Schematic showing the cells involved in the 1-D interpolations and extrapolations at a point xp on the interface. In this example, the filter
kernel has width δ f = 4∆x. The shaded areas shows the cells that are under the reach of the filter.

immersed boundary forcing, and pressure correction. At this step, the momentum update is performed without the
immersed boundary force density:

un+1/2
k =

(
un+1

k + un
)
/2 (52)

ũn+1
k+1 = un + ∆t

− ∇ · (uu)|n+1/2
k −

1
ρ f

pn+1
k +

µ f

ρ f
∇2un+1/2

k+1 +
∂M

∂u

 ũn+1
k+1 − un+1

k

2

 . (53)

In the above, the operatorM represents the sum of the convective and viscous operators,

M(u) = −∇ · (uu) +
µ f

ρ f
∇2u. (54)

The Jacobian ∂M/∂u in equation (53) allows the treatment of the non-linearity with a Newton-Raphson method [30].
The momentum equation is solved using the approximate factorization technique of Choi and Moin [8] based on the
Alternating Direction Implicit (ADI) method.

Step 3: Next, the immersed boundary term is applied. Using expression (48), the force density FI is discretized
as

Fn+1
I,k+1(x) =

N∑
m=1

`(xn+1
m )

un+1
I,m − ũn+1

k+1(xn+1
m )

∆t

 g(x − xn+1
m )Am

 . (55)

where we have used the fact that the velocity at n + 1 at the centroid location must match the interface velocity at the
new time step un+1

I,m to fulfill the no-slip boundary condition. The velocity field is then updated using,

ûn+1
k+1 = ũn+1

k+1 + ∆tFn+1
I,k+1. (56)

Step 4: The pressure-Poisson equation is solved and a final velocity correction is applied to yield a divergence-free
field,

∇2 pn+1
k+1 = −

ρ f

∆t
∇ · ûn+1

k+1 , (57)

un+1
k+1 = ûn+1

k+1 −
∆t
ρ f
∇(pn+1

k+1 − pn+1
k ). (58)

Step 5: Repeat steps 2 to 4 until completion of the iterative Crank-Nicolson loop. Typically, two to three sub-
iterations per time step are used [16].

3.3. Interpolations and extrapolations

In order to implement the VFIB method, there are two operations that require close examination: (a) interpolations
of Eulerian quantities (e.g. fluid velocities) onto Lagrangian points (e.g. centroids of surface triangles), and (b)
extrapolations of Lagrangian quantities (e.g. forcing at the centroids of surface triangles) onto the grid.
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3.3.1. Interpolations
Interpolations are carried out by taking convolutions with the filter kernel g. For the sake of brevity, we illustrate

how the calculation is performed in a one-dimension. Figure 3 shows a sketch of the configuration.
For a Lagrangian point located at xp, the interpolation of an Eulerian quantity Λ(x) at the Lagrangian point is

Λ(xp) =

∫ +∞

−∞

Λ(x′)g(x′ − xp)dx′. (59)

Taking into account the compactness of g, i.e., g(x′) = 0 if |x′ − xp| ≥ δ f /2, the interpolated quantity may be written
as

Λ(xp) =

∫ xp+δ f /2

xp−δ f /2
Λ(x′)g(x′ − xp)dx′. (60)

With a filter kernel δ f /∆x = 4, the integral above can be split into 5 contributions coming from cell i0 containing the
Lagrangian point and two neighboring cells on each side (see figure 3),

Λ(xp) =

i0+2∑
i=i0−2

∫ x(i+1)

x(i)
Λ(x′)g(x′ − xp)dx′. (61)

Finally, we use a mid-point rule to get a second order approximation of the interpolated value

Λ(xp) =

∑i0+2
i=i0−2 Λ(x(i + 1/2))g(x(i + 1/2) − xp)∆x(i)∑i0+2

i=i0−2 g(x(i + 1/2) − xp)∆x(i)
(62)

where ∆x(i) = x(i + 1) − x(i) is the size of cell i. Normalization in (62) is needed to ensure that the kernel is unitary
in a discrete sense.

3.3.2. Extrapolations
Extrapolating a Lagrangian quantity λp defined at the Lagrangian point xp consists in building the Eulerian field

Λp(x) = λpg(x − xp) on the fluid grid. For illustration, we will use the same one-dimensional configuration shown in
figure 3.

We perform extrapolating operations in a Finite-Volume sense, i.e., we compute the cell averages

Λp(i) =
1

∆x(i)

∫ x(i+1)

x(i)
Λp(x′)dx′ = λp

(
1

∆x(i)

∫ x(i+1)

x(i)
g(x′ − xp)dx′

)
(63)

for i = i0 − 2, . . . , i0 + 2. For all other i, Λp(i) = 0 due to the compactness of the filter kernel. In order to reduce
spurious force oscillations with moving immersed boundaries, we calculate the integrals above analytically. To do so,
we use the following decomposition,∫ x(i+1)

x(i)
g(x′ − xp)dx′ =

∫ xr

0
g(x′)dx′ −

∫ xl

0
g(x′)dx′, (64)

where xr = min(max(x(i+1)−xp,−δ f /2), δ f /2) and xl = min(max(x(i)−xp,−δ f /2). With the filter kernels considered
in this study, the integrals in (64) can be computed by hand with ease and directly implemented into the solver.

4. Characteristics of different filter kernels

The filter kernel plays a direct role in the immersed boundary force density, the surface density Σ, and the
fluid/solid volume fraction. In the present work, we build the three-dimensional filter kernel g as the product of
three 1-dimensional filter kernels

g(x − y) = g1(|x1 − y1|)g1(|x2 − y2|)g1(|x3 − y3|). (65)
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Kernel Expression

Triangle g1(r) = 2
δ f

(
1 − 2|r|/δ f

)
if |r| ≤ δ f /2, 0 otherwise.

Parabolic g1(r) =
3/2
δ f

(
1 − (2r/δ f )2

)
if |r| ≤ δ f /2, 0 otherwise.

Cosine g1(r) =
π/2
δ f

cos(πr/δ f ) if |r| ≤ δ f /2, 0 otherwise.

Triweight g1(r) =
35/16
δ f

(
1 − (2r/δ f )2

)3
if |r| ≤ δ f /2, 0 otherwise.

Table 1: One-dimensional filter kernels considered in the present study.
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Figure 4: Graph of the one-dimensional filter kernels in table 1. The filter kernels are symmetric, integrate to unity, and have a compact support
with width δ f .
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parabolic cosine triangle triweight

Figure 5: The effect of varying filter kernels on the (top) normalized surface density Σ/(πDLz/δ3
f ) and (bottom) fluid volume fraction α1 for a

circular immersed boundary of diameter D with filter width δ f /D = 1/6. The grid spacing is such that 4 grid points lie across the filter width
(δ f /∆x = 4).

We consider 4 different 1-dimensional filter kernels called triangle, parabolic, cosine, and triweight as described in
table 1. Figure 4 shows a graph of these kernels. These filters are unitary, symmetric, and compact with width δ f . The
triweight filter has the highest peak and therefore the narrowest kernel with the majority of the weight distributed in
the center, followed by the triangle kernel. Lastly, the cosine and parabolic kernel are similar in shape and have the
smallest peak with the widest weight distribution.

Here, we emphasize that there is a fundamental difference between Peskin’s regularized Dirac delta and the filter
kernels considered here. The properties introduced by Peskin [29] originate from the fact that a true distribution
cannot be represented on a discrete grid, thus, additional properties are needed to regularize the discrete Dirac delta. In
contrast, the filter kernels discussed here, must satisfy only two conditions, being unitary and symmetric, to make the
derivation of the volume-filtered equations possible. The third condition of compactness is added for computational
efficiency, but other filters with infinite support (e.g. Gaussian filter) can be used in principle. With this distinction
emphasized, we can also show that a unitary, symmetric, and compact filter kernel satisfies Peskin’s properties in a
discrete sense. Considering a 1D kernel, these three conditions yield

compact: g1(x) = 0 for |x| ≥ δ f /2 (66)

unitary:
∫
R

g1dx = 1→
∑

i

g1(xi)∆xi = 1 (67)

symmetric: g1(−x) = g1(x)→
∫
R

(x′ − x)g1(x′ − x)dx = 0→
∑

i

(xi − xi0 )g1(xi − xi0 )∆xi = 0 (68)

where the integrals are discretized using the mid-point rule. Thus, the requirement that g is unitary, symmetric, and
compact is sufficient to satisfy Peskin’s conditions [29].

To illustrate the impact of these kernels, we consider a circular immersed boundary of diameter D in figure 5.
The Cartesian grid is uniform with grid spacing ∆x = D/24. In order to retain small stencils for interpolations and
extrapolations, the ratio of filter width to mesh spacing is set to a fixed value δ f /∆x = 4. This gives a moderate
resolution of the cylinder as shown by the ratio δ f /D = 1/6. The top panels in figure 5 show the surface density Σ

obtained using the four filter kernels in table 1. The surface density field reflects clearly the relative spread of the filter
kernel, whereby the narrowest kernel, the triweight kernel here, leads to the largest surface density peaks. Conversely,
the parabolic kernel, which is the most spread out, leads to comparatively lower surface density. The bottom panels in
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figure 5 shows the fluid volume fraction field obtained by solving the Poisson equation (41). As expected, inside the
fluid volume fraction is equal to 0 inside the cylinder and equal to 1 outside. Near the boundary, the volume fraction
transitions smoothly. This transition is slightly sharper for the narrower filter kernels, although these differences are
not as significant as those seen for surface density.

5. Test cases using the VFIB method

In this section, we apply the VFIB method in five benchmark tests with static and moving immersed boundaries.
The rationale for the choice of these cases is as follows:

• Fixed cylinder in a channel flow: This two-dimensional case demonstrates the VFIB in a simple configuration.
We use this case to investigate the effect of varying (i) filter kernels, (ii) varying filter sizes D/δ f , and (iii)
resolutions (D/∆x and δ f /∆x).

• Fixed cylinder in free stream: We consider this second two-dimensional test case to enable comparison with
other immersed boundary methods since this is among the most popular benchmark tests.

• Laterally oscillating cylinder in crossflow: This case demonstrates the ability of the VFIB method to handle
forcibly moving IBs in 2D.

• Flow past a sphere: This case shows the ability of the method to handle 3D static IBs, and reproduce intricate
wake patterns.

• Freely falling sphere under gravity: This case shows the ability of the method to handle freely moving 3D
IBs. It shows the potential of the method in applications related to Particle-Resolved DNS and Fluid-Structure
Interaction (FSI).

5.1. Fixed cylinder in a channel flow

In this first test, we consider the two-dimensional case of a static cylinder of diameter D in a channel at Reynolds
number ReD = 100. The channel length and height are Lx = 22D and Ly = 4.1D, respectively. The cylinder is placed
asymmetrically at x = y = 0.3D. A parabolic inflow with average velocity U is prescribed at the inlet x = 0. The
average velocity U and fluid kinematic viscosity ν are chosen such that ReD = UD/ν = 100.

In the VFIB method, we make a distinction between the IB resolution, characterized by the ratio δ f /D, and the grid
resolution, characterized by the ratio D/∆x, although the two are connected. We consider three levels of resolution
of the immersed boundary: (i) coarse resolution with δ f /D = 1/6, (ii) medium resolution with δ f /D = 1/12, and
(iii) high resolution with δ f /D = 1/24. Unless noted otherwise, the grid spacing is chosen such that δ f /∆x = 4.
This choice has the benefits of providing sufficient resolution of the filter kernel while retaining compact stencils for
interpolations and extrapolations that use only 5 grid points in each direction. With fixed δ f /∆x = 4, the coarse,
medium, and fine IB resolutions yield increasingly fine grids characterized by the ratios D/∆x = 24, 48, and 96.

Figure 6a shows isocontours of normalized velocity magnitude ||u||/U at the medium IB resolution δ f /D = 1/12
obtained using the triangle filter kernel. The wake behind the cylinder shows a pair of attached eddies that form
behind the cylinder similar to the observations made by Tritton [41] and Zdravkovich [48]. Figure 6a also shows the
existence of an internal flow within the cylinder. This internal flow is anticipated in the one-phase formulation because
u = α1u1 +α2u2 represents the sum of both internal and external flows. The former flow can be hidden by multiplying
the total fluid velocity with the external fluid volume fraction α1, as shown in figure 6b, since α1u ' α1u1.

To assess quantitatively the performance of the VFIB method, we compare with the benchmark study of Schäfer
et al. [34] where the results from several simulations using body-fitted meshes are complied. For the present case at
ReD = 100, Schäfer et al. [34] give a Strouhal number St = 0.3±0.005, maximum drag coefficient CD,max = 3.23±0.01,
and maximum lift coefficient CL,max = 1.0 ± 0.01. In the present work, drag and lift forces on the immersed solid are
computed using the contribution of the external fluid only as explained in §2.4. Figure 7 shows the evolution of the
drag and lift coefficients at the resolution δ f /D = 1/24 using the triangle kernel. These quantities reach a stationary
state after t ∼ 40D/U. We compute statics using data from this point until t ∼ 65D/U (about 15 periods). For the
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(a)

(b)

Figure 6: Isocontours of (a) ||u||/U and (b) ||α1u1 ||/U at the resolution δ f /D = 1/12 and using the triangle filter kernel. The location of the
immersed boundary is identified by the isolevel α1 = α2 = 0.5. Multiplying by the volume fraction of the external fluid α1 hides the internal flow.
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Figure 7: Time evolution of the (a) drag coefficient and (b) lift coefficient for the case of a cylinder asymmetrically placed in a channel at ReD = 100.
The data is obtained using the triangle filter kernel with width δ f /D = 1/24.
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Figure 8: Effect of varying resolution and filter kernels on the (a) maximum drag coefficient, (b) maximum lift coefficient, and (c) Strouhal number
for the case of a cylinder asymmetrically placed in a channel at ReD = 100.
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Figure 9: Effect of increasing the grid resolution at fixed filter width δ f = D/12 on the (a) maximum drag coefficient, (b) maximum lift coefficient
on a cylinder asymetrically placed in a channel at ReD = 100. For these simulations, the triangle filter kernel is used. Results are well converged
for δ f /∆x ≥ 4.

case shown in figure 7, we find St = 0.300, CD,max = 3.27, and CL,max = 0.94. These values are in excellent agreement
with the results of body-fitted simulations reported by Schäfer et al. [34].

Figure 8 shows that increasing the IB resolution causes CD,max, CL,max, and the Strouhal number St to converge to
the benchmark values, regardless of the choice of filter kernel. Note that with improving IB resolution, i.e., decreasing
ratio δ f /D, more grid points are required to maintain the ratio δ f /∆x = 4. From figure 8, we observe that the predicted
drag, lift, and Strouhal converge to the benchmark values as δ f /D is reduced for all filter kernels considered. The
choice of filter kernel has little effect on the predicted maximum drag and lift coefficients, and Strouhal number
provided that the immersed boundary is sufficiently well resolved.

For a fixed filter width δ f , the predicted drag and lift coefficients also converge with decreasing ∆x. In figure 9, the
filter width is maintained at δ f /D = 1/12, while the grid spacing ∆x progressively reduced such that the ratio δ f /∆x
varies from 2 to 8. At the lower end δ f /∆x = 2, the interpolation/extrapolation require stencils with only 3 grid points
in each direction, thus, making this choice the most computationally efficient one. At δ f /∆x = 8, the stencils require
9 grid points in each direction. As shown in figure 9, CD,max, CL,max converge with increasing ratio δ f /∆x. The choice
of δ f /∆x = 4 is a happy medium between small stencils and well converged results.

5.2. Fixed cylinder in free stream
We now consider the case of a fixed cylinder of diameter D placed in free stream. Unless otherwise noted, the

simulations are carried out in a computational domain of size Lx = Ly = 26D, similar to the configuration considered
by Uhlmann [44] . A uniform inflow with velocity U is prescribed at the inlet x = 0. The cylinder is placed at
x = 6D and centered in the y direction. The parameters are chosen such that the Reynolds number ReD = UD/ν is
100. We also consider an additional simulation in an enlarged domain of size Lx = Ly = 40D to compare with the
sharp-interface IB method of Mittal et al. [24].

Once the flow over the immersed cylinder is established, a vortex street is observed in the wake of the cylinder.
Figure 10a shows that vortices are shed from the top and bottom of the cylinder at alternating intervals. This leads to
oscillating drag and lift forces as shown in figures 10b and 10c. The periodic vortex shedding is characterized by the
Strouhal number St = f0D/U where f0 is the shedding frequency extracted from the lift force.

Table 2 contains a summary of the Strouhal number St, mean drag coefficient CD, fluctuating drag coefficient
C′D, and fluctuating lift coefficient is C′L from the present simulations with the triangle filter kernel. Data obtained
with the body-fitted mesh simulations of Liu et al. [21], and IB methods of Uhlmann [44] and Mittal et al. [24] are
also included for comparison. For the case shown in figure 10, with resolution δ f = D/24, we find St = 0.165,
CD = 1.434, C′D = 0.010, and C′L = 0.346. For comparison, Liu et al. [21] give St = 0.165, CD = 1.35, C′D = 0.012,
and C′L = 0.339 from simulations with body-fitted mesh, whereas Uhlmann [44] gives St = 0.172, CD = 1.501,
C′D = 0.011, and C′L = 0.349 using his immersed boundary method. Thus, the agreement with the benchmark results
of Liu et al. [21] is improved using the VFIB method, particularly for the Strouhal number and mean drag coefficient.
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Figure 10: Flow past an immersed cylinder at ReD = 100 obtained using the VFIB method with the triangle filter kernel and width δ f = D/24.
Vortex shedding can be seen from (a) alternating isolevels of positive (orange) and negative (green) vorticity. This results in fluctuating (b) drag
and (c) lift coefficients.

Table 2: Characteristics of drag and lift coefficients for a cylinder in a freestream at ReD = 100. The results from the VFIB method are compared
to body-fitted simulations of Liu et al. [21] and the immersed boundary approach of Uhlmann [44] and Mittal et al. [24].

δ f /D D/∆x CD C′D C′L St
Liu et al. [21] – – 1.350 0.012 0.339 0.165
Present 1/3 10 1.364 0.003 0.214 0.165

1/5 20 1.424 0.008 0.320 0.165
1/10 40 1.434 0.010 0.348 0.165

Present (enlarged) 1/16 64 1.355 0.010 0.331 0.165
Uhlmann [44] – 38.4 1.501 0.011 0.349 0.172
Mittal et al. [24] – 66 1.350 – – 0.165
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Figure 11: Effect of varying resolution and filter kernel on the (a) mean drag, (b) drag fluctuation, (c) lift fluctuation, and (d) Strouhal number for
the case of an immersed cylinder at ReD = 100.

The latter is within 6.2% of the value reported by Liu et al. [21], compared to an over-prediction by 11.1% given by
Uhlmann [44].

The drag over-prediction reduces further to less than 0.37% when the simulation is carried in the enlarged domain
and at the higher resolution δ f /D = 1/16. This resolution, which corresponds to D/∆x = 64, and enlarged domain
are chosen to approximately match the domain and resolution used by Mittal et al. [24], that is D/∆x = 66. As shown
in table 2, our results match very closely those of Mittal et al. [24] and the reference results of Liu et al. [21].

Figure 11 shows the effect of varying the filter kernel and width. Similar to what we have shown in the previous
numerical example, these results show that the predicted St, CD, C′D, and C′L converge with improving resolution of the
immersed cylinder and that the choice of the filter kernel has little impact if the immersed boundary is well resolved.

5.3. Laterally oscillating cylinder in a uniform crossflow
In this test, we consider a laterally oscillating immersed cylinder in a uniform crossflow at ReD = 185. The

configuration is identical to the one described in the previous test (§5.2), with the difference that, now, the cylinder
has forced oscillations around its position. The displacement of the cylinder center is ∆yc = 0.2D sin(2π fet), where
fe = 0.8 f0 is the forced oscillation frequency, and f0 is the natural shedding frequency at ReD = 185. We consider
two spatial resolutions at δ f /D = 1/6 (coarse), and 1/12 (medium), and vary the time step ∆t to yield a maximum
Courant-Friedrich-Levy number CFLmax between 0.5 and 0.1. Since we have determined that the choice of filter
kernel plays little role for well-resolved immersed boundaries, we perform tests with the triangle kernel only.

Once the flow reaches a stationary state, a vortex street is observed in the wake of the cylinder. Figure 12a shows
the vortex contours when the cylinder is at its highest and lowest displacements. Compared to the case of a static
cylinder, the vortex contours from the upper end of the cylinder are elongated, and the contours form the base of the
cylinder are tightened, when the cylinder is in the highest dispalcement. This tightening of the base vorticity is due
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Figure 12: Flow past an oscillating immersed cylinder with a crossflow at ReD = 185 obtained using the VFIB method with the triangle filter
kernel, width δ f /D = 1/24, and CFLmax = 0.5. (a) Isocontours of positive (orange) and negative (green) vorticity when the cylinder is at its highest
(top) and lowest (bottom) positions. This results in fluctuations of (b) drag and lift coefficients.

to the upward motion of the oscillating cylinder generating vorticity at the base. The opposite behavior is observed
in the configuration of lowest displacement. Similar observations were also reported by Lu and Dalton [22] who
used simulations with body-conforming meshes. As a result of this vortex shedding, oscillatory fluctuations in the
coefficient of drag and lift are witnessed as shown in figure 12b.

Table 3 contains a summary of the mean drag coefficient CD, drag fluctuations CD,rms, and lift fluctuations CL,rms.
The values reported by Lu and Dalton [22] and Uhlmann [44] are also reported for comparison.

At the coarse resolution δ f /D = 1/6, there is a strong sensitivity to temporal errors, but, these reduce significantly
with decreasing CFLmax. Taking the values reported by Lu and Dalton [22] as reference, the VFIB method at CFLmax =

0.5 yields CD, CD,rms and CL,rms that are within 2.5%, 22.8%, and 25% respectively, of the reference values. Reducing
CFLmax to 0.25 or 0.1 causes deviations in predicted CD and CD,rms to reduce to 1% and 3.5%, respectively. In
addition, the deviations in CL,rms reduce to 14% and 1.8% at CFLmax = 0.25 and 0.1. Note that even at CFLmax = 0.5,
and the coarse resolution δ f /D = 1/6 (D/∆x = 24), the values predicted using the VFIB method agree better with the
reference values in [22] than those given by Uhlmann [44] with D/∆x = 38.4 and CFLmax = 0.6 (see table 3).

With improving resolution of the immersed boundary to δ f /D = 1/12, the predicted CD,rms and CL,rms converge to
those given by Lu and Dalton [22] even at CFLmax = 0.5. The mean drag coefficient CD is off by 3.2% at CFLmax = 0.5
and converges to the exact reference value at CFLmax = 0.25.

This greatly enhanced performance compared to the method of Uhlmann [44] is the result of three improvements:
(i) a more accurate way of computing the hydrodynamic force using equation (46), (ii) the fact that, in Uhlmann’s
method, the surface markers have a Lagrangian volume ∆Vm = ∆x3 which, as we discussed at the end of section 3.1,
is not accurate, and (iii) significantly reduced spurious force oscillations, as we discuss next.

Here, we emphasize that our treatment of extrapolations using analytical calculations of the integrals shown in
§3.3 reduces spurious force fluctuations considerably without the need for any smoothing technique like the one
developed by Yang et al. [47]. Figure 13 shows a graph of CD during 1 period of oscillation at CFLmax = 0.5 at
the resolutions δ f /D = 1/6 and 1/12. Similar to what has been reported by Yang et al. [47] and Uhlmann [44],
spurious force fluctuations can be seen in the graph with the coarse resolution δ f /D = 1/6 shown in figure 13a.
These oscillations have length scale comparable to the mesh spacing ∆x, and depend largely on how interpolations
and extrapolations are performed numerically. Increasing the spatial resolution reduces the amplitude of the spurious
oscillations significantly. Without using any smoothing technique, the curve in figure 13b (δ f /D = 1/12) is as smooth
as the one shown in [47] obtained with similar numerical parameters. This is because, as the immersed solid moves,
cells that are only partially covered by the filter kernel are still forced when the extrapolation is performed as shown
in §3.3, even if this coverage is minute. In contrast, in methods based on numerical approximations of the integrals
using the mid-point rule, a cell would not be forced until at least half of it is covered by the kernel (or, similarly, the
support of the discretized Dirac delta), which leads to jagged and discontinuous forcing as the immersed solid moves.
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Table 3: Characteristics of drag and lift on a transversely oscillating cylinder at ReD = 185. Results from the present VFIB method are compared
to results of Lu and Dalton [22] obtained using body-confirming grid, and the results with the immersed boundary method of Uhlmann [44] and
smoothing technique of Yang et al. [47]. For the latter, we report only their smoothest case obtained using their smoothed 4-point piecewise Dirac
delta.

δ f /D D/∆x CFLmax CD CD,rms CL,rms

Lu and Dalton [22] – – – 1.25 0.040 0.18
Present 1/6 24 0.5 1.28 0.031 0.135

1/6 24 0.25 1.24 0.039 0.155
1/6 24 0.1 1.24 0.039 0.177
1/12 48 0.5 1.29 0.040 0.18
1/12 48 0.25 1.25 0.040 0.18

Uhlmann [44] – 38.4 0.6 1.380 0.045 0.176
Yang et al. [47] – 50 – 1.29 0.043 0.07
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Figure 13: Time-periodic variation of CD with respect to the position of the oscillating cylinder for ReD = 185 at (a) CFLmax = 0.5, δ f /D = 1/6
(D/∆x = 24) and (b) CFLmax = 0.5, δ f /D = 1/12 (D/∆x = 48).
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Figure 14: Computational domain used for simulations of flow past a sphere.

5.4. Flow past a sphere

We now consider a three dimensional case involving the flow past a sphere. This flow has been studied in detail by
numerous investigators, thus, providing a wealth of information to validate the present immersed boundary strategy.
Notably, Johnson and Patel [15] used a numerical approach based on a body-fitted grid to resolve the steady and
unsteady dynamics associated with the transition from attached wake to vortex shedding in the wake of a sphere up to
Reynolds number of 300. Johnson and Patel [15] showed that the wake is steady and axisymmetric up to ReD ' 200.
For ReD between 210 and 270, the wake remains steady although the axisymmetry is lost. Values of ReD greater than
270 lead to periodic vortex shedding in the form of a sequence of hairpin vortices.

In order to compare with the results of Johnson and Patel [15], we perform simulations of the flow over a sphere
at Reynolds numbers from ReD = 25 to 300. The simulation domain extends by Lx = 26D in the flow direction,
and Lz = Ly = 16D in the two normal directions. Figure 14 shows a schematic of the configuration. Since we have
established that the choice of filter kernel has little effect effect in well-resolved simulations, we consider simulations
with the triangle filter kernel only.

Figure 15 shows the variation of the drag coefficient with Reynolds number. For comparison, data obtained
using the VFIB method is plotted alongside results of the body-fitted grid simulations of Johnson and Patel [15], and
experiments of [33]. Further, the Schiller-Naumann correlation CS N

D = 24
Rep

(1 + 0.15Re0.687
p ) is also reported on the

same plot [35]. At low Reynolds numbers, the low resolution simulations with δ f /D = 1/3 give a drag coefficient in
excess by up to 10% of the Schiller-Naumann drag coefficient, but still within good agreement with other numerical
and experimental data. Increasing the resolution of the immersed boundary to δ f /D = 1/6 and δ f /D = 1/9 causes
the predicted drag values to converge. At the highest resolution, there is excellent agreement with prior data and the
Schiller-Naumann correlation.

In figure 16, we examine the characteristics of the wake up to ReD = 200. Figure 16a shows the streamlines in the
x-y plane going through the sphere’s center for the four cases at ReD = 50, 100, 150, and 200, and at the resolution
δ f /D = 1/9. At these Reynolds numbers, the flow is steady and axisymmetric. The near-wake flow exhibits a
recirculation bubble similar to previously reported observations [40, 31, 15]. As shown in figure 16a, flow separation
happens at an angle Θs that decreases with increasing Reynolds number, while the bubble length ls increases with
increasing Reynolds number. In figures 16b and 16c, we compare the values of bubble length ls and separation
angle Θs obtained with the VFIB method with those obtained by Johnson and Patel [15]. Figure 16b shows that the
resolution δ f /D = 1/6 is sufficient to yield excellent agreement with the data of Johnson and Patel [15]. However,
capturing the separation angle Θs accurately requires higher resolution. For the cases with δ f /D = 1/6, we find a
separation angle that is larger than the previously reported values by about 8 degrees at ReD = 25, and 18 degrees at
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Figure 15: Variation of the drag coefficient with Reynolds number for the flow past a sphere.

ReD = 200. These deviations reduce to 1 degree at ReD = 25, and 8 degrees at ReD = 200, when the resolution is
increased to δ f /D = 1/9. The trend in figure 16c shows that the angles obtained using the VFIB method converge
towards the reference values, but higher resolution is required to achieve agreement within a few degrees.

When the Reynolds number is increased to ReD = 250, the VFIB method correctly captures the transition to an
asymmetric near-wake. Figure 17 shows flow streamlines at ReD = 250 and resolution δ f /D = 1/9 in the x-y and x-z
planes. While the flow remains steady, an azimuthal mode appears in the near wake. This mode is symmetric about
the x-z plane. These observations are in agreement with the results of Johnson and Patel [15] who also observe loss of
axisymmetry due to the emergence of an azimuthal mode with planar symmetry similar to what is shown in figure 17.

5.5. Freely falling sphere under gravity

In this final test, we consider the case of a freely falling sphere under gravity. The particle position xp, velocity
up, and angular velocity ωp are updated at each time step by solving the following equations of motion,

dxp

dt
= up (69)

mp
dup

dt
=

∫∫
S I

n · τ1dS + (ρp − ρ f )
πD3

6
gv (70)

Ip
dωp

dt
=

∫∫
S I

(y − yp) × n · τ1dS (71)

where ρp, D, mp = ρp(π/6)D3, and Ip = mpD2/10 are the particle density, diameter, mass, and moment of inertia.
Here, gv denotes the gravitational acceleration. The first term on the right hand side of (70) represents the hydrody-
namic stresses exerted by the external fluid and computed using the expression (46). This requires an update of the
volume fraction field α f at each step, which is carried out as described in section 2.3.

We use the experiments from Mordant and Pinton [26] as benchmark. In these experiments, a spherical particle
is released with zero velocity in a fluid initially at rest. The particle accelerates until it reaches its terminal velocity.
The latter is controlled by two non-dimensional numbers: the density ratio ρp/ρ f and the Galileo number Ga =√

(ρp/ρ f − 1)gvD3/ν.
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Figure 16: Characteristics of the wake behind an immersed sphere in the axisymmetric regime: (a) streamlines at ReD = 50, 100, 150, and 200, (b)
length of the separation bubble, and (b) separation angle.
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Figure 17: Streamlines showing the asymmetric near-wake flow past a sphere at ReD = 250.
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For our comparison, we match case 2 from Mordant and Pinton [26] for which ρp/ρ f = 2.56 and Ga = 255.35.
The simulations are carried out in a domain with dimensions Lx = Lz = 8D, and Ly = 40D in the direction of gravity.
Three filter sizes are considered: δ f = D/2, δ f = D/3, and δ f = D/4. With the requirement δ f /∆x = 4, this yields 8,
12, and 16 grid points across the particle diameter, respectively. In all these runs, CFLmax ∼ 0.35.

Figure 18 shows comparison of the particle velocity time series with the experimentally obtained data by Mordant
and Pinton [26]. As can be seen from the figure, the case with resolution δ f /D = 1/4 shows excellent agreement with
the experiment. The difference between the computed terminal velocity and the one reported by Mordant and Pinton
[26] is less than 0.3%. The Reynolds number and Froude number based on the terminal velocity are Re = vp,tdp/ν =

368.39 and Fr = vp,t/
√

gD = 1.80, respectively, in the simulations and Re = 367.41 and Fr = 1.80 in the experiments.
There is good agreement even for the case with resolution δ f /D = 1/3 where the relative error for the settling velocity
is about 2.5%. In the coarsest case δ f /D = 1/2, the relative error increases to about 13.8%.

6. Conclusion

In this paper, we have presented a novel immersed boundary method, called VFIB, derived by applying the
volume-filtering technique of Anderson and Jackson [2]. Without assuming any discretization, we obtain filtered
transport equations where the effect of the immersed boundary appears as a forcing on the right-hand side of these
equations. This new framework can be regarded as a generalization of previous immersed boundary methods, and
provides a theoretical footing for further extensions. We provided extensive details on how this method can be imple-
mented in existing flow solvers and showed that it yields excellent results in two- and three-dimensional cases with
static, forcibly moving, and freely moving immersed boundaries.

We shall emphasize that there are no restrictions on the type of computations that can be performed with the VFIB
method. As shown in the numerical examples, any moving or static can be accurately represented and accounted for
including for problems in fluid-structure interaction, impeller/turbine setups, and Particle-Resolved DNS of particle-
laden flows.

The present work contains key innovations that enable us to answer several open questions in the literature of
immersed boundary methods. First, by volume-filtering the original Navier-Stokes equations, we derived analytically
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the immersed boundary forcing term. This is in contrast to the majority of prior methods that build the IB forcing
based on numerical considerations, such as requiring that cells coinciding with the IB have velocities that match the
IB velocity at the next step [44, 19, 38, 36, 23, 7, 17, 42]. A major aspect of our method is the fact that we intentionally
take into account the finite width of the filter. This allows us to carry out the analytical derivation, find an expression
for the IB forcing, derive equations for the fluid/solid volume fraction, and forces exerted on the IB by the external
flow.

Second, using the VFIB method, we are able to elucidate the role of the internal flow obtained when the IB forcing
is limited to the solid-fluid boundary only. As we show in the one-phase formulation, this flow has physical meaning
and exists because the immersed object is in reality hollow, has infinitely thin shell, and is filled with identical fluid
to the one on the outside. It follows that when the immersed object moves, the fluid inside is also affected, resulting
in additional stresses on the boundary. In order to isolate the hydrodynamic force due to the external fluid only, the
contribution due to the internal fluid must be removed. The details are given in §2.4. This approach removes the need
for ad-hoc fixes, like artificially retracting the immersed boundary, to get accurate hydrodynamic forces.

Third, we showed that the volumes associated with Lagrangian markers depend on the local topology of the
interface and can be determined simply using the smearing length ` and a triangular tessellation of the interface
(∆Vm = `(xm)Am). These Lagrangian volumes arise after discretization of the surface integrals accounting for the
IB forcing. At a point xm on the interface, the smearing length is the inverse of the surface density at that point
`(xm) = Σ(xm)−1. Its value depends on the local curvature, and choice of filter kernel, and is generally on the order of
the filter width δ f .

Fourth, we provided an efficient procedure to compute the solid volume fractions αs. The approach is based
on solving a Poisson equation for αs rather than using the cumbersome and computationally expensive definition.
Computing the volume fraction allows efficient tagging of interior/exterior cells, and is used in the procedure to
isolate the hydrodynamic stresses due to the external fluid from the total stresses due to both internal and external
fluids.

Fifth, we showed a path forward to extend the VFIB method to Large Eddy Simulations with immersed boundaries.
By rigorously filtering the Navier-Stokes equations, we showed the presence of sub-filter scale terms. While we have
not considered this in the present study, closures for these terms can be carried out using existing LES models, or
derived by applying coarse filters to highly-resolved simulations with the VFIB method.

Lastly, we found that the choice of filter kernel does not impact the solution considerably, provided that the
immersed boundary is well resolved. Among the four kernels we have considered, the triangle kernel is the simplest
to implement and is, thus, the preferred one. The resolution of the immersed boundary depends on the ratio δ f /δc

where δc is the characteristic corrugation scale of the interface. In two-dimensional cases of flow past a cylinder of
diameter D, we found little difference between the filter kernels when δ f /D ≤ 1/12. With increasing resolution, drag
and lift coefficients converge towards the reference values to within one or two percent. In three dimensional cases of
flow past a sphere, we get accurate drag coefficient, separation angle, and recirculation bubble length with a resolution
δ f /D = 1/9.
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Appendix A. Alternative form of the volume-filtered equations

Here, we explain how equations (20) and (21) can be further transformed to get the familiar form used in multi-
phase flows. Starting from equation (21), we expand the first term on the right hand side to obtain

ρ f

(
∂

∂t
(α f u f ) + ∇ · (α f u f u f )

)
= −α f∇p + α f∇ ·

(
µ f

(
∇u f + ∇uT

f −
2
3

(∇ · u f )I
)

+ Rµ, f

)
− F̃I, f − ∇ · (α fτsfs,f).

(A.1)
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In this usual form, the term F̃I, f is given by

F̃I, f = FI, f − ∇α f · τ, (A.2)

where τ = −pI + µ f (∇u f + ∇uT
f − 2/3(∇ · u f )I + Rµ is the filtered stress tensor. Inserting τ in identity (12), we can

show

∇α f · τ −

∫∫
y∈S I

n · τg(x − y)dS = α f

(
∇ · τ − ∇ · τ

)
= O(δ2

f ). (A.3)

Equation (A.3) combined with the fact that τ = τ + O(δ2
f ) leads to

F̃I, f =

∫∫
y∈S I

n ·
(
τ − τ

)
g(x − y)dS + O(δ2

f ). (A.4)

The momentum equation is then written in the following form

ρ f

(
∂

∂t
(α f u f ) + ∇ · (α f u f u f )

)
= −α f∇p + α f∇ ·

(
µ f

(
∇u f + ∇uT

f −
2
3

(∇ · u f )I
)

+ Rµ, f

)
−

∫∫
y∈S I

n · (τ − τ)g(x − y)dS − ∇ · (α fτsfs,f). (A.5)
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